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owdensity CH and CH, foams have  become an 
important fatwe in  ICF and HEDP technology 

I Dynam~c nonraums 



Different  radiation  transport  approximations 
predict  different  propagation speeds in 5 mdcc CH. 

The scaled radiation ene dient R in the CH  foam  is  in 

- CN@5QeVv.5m& Ranee of Diffusion Coefficients' 



A 5 mglcc CH, foam was fielded 
on Z shot #X74 with AI and MgFz tracers 

to measure  the  relative  heating  at two different  location __ 
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shifting  charge  states  in  the AI and MgF, tracers  on Z shot #874. 
A time-resolved  elliptical  crystal  spectrometer  measured 
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ion: Detailed  Line  Emission  and  Absorption 1 

Dependent  Absorption  Specb 

b '  

view-factor  code are utilized to calculate 
3-D simulations  using the VISRAD 

non-thermal  drive  spectra on the sample  surface. 

%-Fa< Incident Spectra at t = 100 ns 

. .  
Calculated  Drive Flux Incident  Radiation Temperatures 
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The  plasma  temperature and density  evolution is 

ucmated  by the BUCKY I-D radiation-hydrodynamics code. 
(R, ~ ~ p r t  d e l e d  with d m t e  ordinates assuming a 15% ineteae in masund winch  power) 

the AI and MgF2 Plasmas 
Average  Conditions  In 

Calculated  Plasma  Conditions 
Spatial  Profiles of the 

1 - r=92.0m 
- l=M.Onp 
- !=%.ON 
- !=98.Om 

~ f - 102.Qar 
... !=1OO.Om 

I! 

SPECT3D calculations of the  atomic level 
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-Calculation -- t = 92.0 f 0.5 ns 

t = 94.0 f 0.5 ns 
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aut: chi-squared fitting program called SPECTROFIT 
kch   t ime-hue   can   be  analyzed by an 

SPECTROFIT 
* Reads  detailed  line-opacity  tables 

generated by the JATBASEYEOSOPA 
code - LTE and Non-LTE opacities 

- Arbitrary  plasma  mixtures 

- Compares  two  relative  transmission 
absorption specua (i.e.  experiment  vs. 
calculation)  at  discrete temperatures 
and  densities. 

* Computes  chi-squared  fit  parameter 
for a  user-defmed  grid  resolution ova 
a  specified  temperature  and  density 
range. 

Comparison  between AI K-a spectra at 
t = I 0 0  ns,  and  a SPECTROFlT best fit 

( x 2 =  1.91) 

Reports  fit-variance, y.2, and +lo 

i curves  show the contour in temperature-density 
The SPECTROFIT x2 and fit-variance 

phase  space  where  the  calculated  spectra  best  match the data. 

the  comparison between the AI data  at 
t = I 0 0  ns, and the calculated spears. 

plots  at  discrete  densities for 
T-p phase space for the AI spechum 

Fit  variance  over the searched 

att=lOOns. 
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power, different  radiation transport methods  predict  a 
Including  the k 25% uncertainty  in  measured 

wide-range of temperature conditions in the AI and MgF, tracers. 
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ite this uncertainty, the data fiom the experiment 
clearly  indicates that  flux-limited  diffusion is too restrictive, 

sueeestine that discrete  ordinates is a much  more  accurate transport method. 
I 

Aluminum Calculation f MuminumData 

Magnesium Calculation + Magnesium Data 

I Disrrete Ordinates 
(multi-angle  short- 

characteristics  solution) 
Flux-Limited Diffision Flux-Limited  Diffusion 

(MAX  limiter) (SUM limiter) 

Summary  and Hypothesis 

-- 
* Calculations  indicate that5 mg/cc  CH,  foams have an optical  depth  in  a  regime  where 
flux-limited  diffusion  may  not  provide an murate predication of the  radiation  transfer 
S p e e d .  

* A 5  mg/cc  CH, (TF'X) foam  was  fielded on the  Z  machine  for shot #X74 with  Aluminum 
and  Magnesium-Fluoride tracers buried at different depths. 

* Z-pinch  backlit  K-shell  absorption spectra of the shifting Aluminum and  Magnesium 

pinch  x-ray  emission. 
charge  states  provide  information on the  time-dependent  heating  of the tracers under the z- 

- The SPECTROFIT  chi-squared  fitting  code  was  utilized in conjunction with radiation- 
hydrodynamics  calculations of the  time-dependent  density  conditions in the Aluminum 
and  Magnesium-Fluoride  layers to infer the time-dependent  temperature  profile  in  the two 
tracers. - Direct comparison between the inferred  heating  profiles  and  radiation-hydrodynamics 
calculations using different  radiation  transport  approximations  suggests  that Discrete 
mina tes  mo 
mdcc CH,  foam than the standard  

vides  a much  more accurate  solution to the  rad^ 
Flux-Limited Diffusion amroximation. 
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